name : Srote-3D printing.doc
��ࡱ�>��	VX����U�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������{�	���<bjbjz�z�	4V���45������������������8DL���:�������FHHHHHH$���!@l������l������iii�F����Fi�Fii�J�������3'�����R2�0�,�!o��!JJ8�!�����i�����lli�����������������������������������������������������������������������������!���������� �:	@9                               3-D Printing: The Next Thing in Making 
Bhaswar Lochan
Introduction
Since the invention of printing press in 1450 CE by Johannes Gutenberg the printing technology has gone through many changes and today it has come on the verge of what may be the next�manufacturing revolution; the 3-dimensional printing. Using this technique one can virtually make anything according to one�s customized needs. Be it a pair of shoes or a new shirt, everything could be prepared by clicking just one button on a keyboard. 
Traditional approaches for creating complex objects convert crude material into the desired ones by removing unnecessary parts, i.e., they are subtractive. Blades, abrasives, lasers or other cutting tools whittle away at a solid block, carving out fine features. Subtractive approaches can create exquisitely complicated items, but that complexity comes at a cost: The more intricate the object, the more time and advanced skills required to make it.
In contrast 3-D printing is an additive technology in which objects are built up by designing the product on a computer screen with the help of drafting software. That design then goes through a program which slices it up, translating it into a stack of two-dimensional layers. The printer then constructs the object by depositing the first layer of material such as molten plastic that hardens and then another and another, gradually creating the desired shape. This manufacturing renders irrelevant the problem of getting a tool into a tight internal nook or cranny also. Because 3-D printers build by setting down material as they go, a printed object can have delicate lacelike features or strange curving parts, like the antlers on a model deer head.
Technology behind 3-Dimensional Printing
The first commercial 3D printer was invented by Charles Hull in 1984, which was based on a technique called�stereo lithography. In this technology, Stereolithographic 3D printers (known as SLAs or stereo lithography�apparatus) use to position a perforated platform just below the surface of a vat of liquid photopolymer. A UV laser beam then traces the first slice of an object on the surface of this liquid, causing a very thin layer of photopolymer to harden. The perforated platform is then lowered very slightly and another slice is traced out and hardened by the laser. Another slice is then created, and then another, until a complete object has been printed and can be removed from the vat of photopolymer, drained of excess liquid, and cured. Stereolithographic printers are one of the most accurate types of hardware for fabricating 3D output, with a minimum build layer thickness of only 0.06mm.
 DLP projection is another technique of 3D printing, which is based on the selective solidification of a tank of liquid. This uses a projector to solidify object layers one complete cross-section at a time, rather than using a laser to trace them out. It creates objects by using a light source to solidify a liquid photopolymer by the method known as 'material jetting', or commercially as 'polyjet matrix'. Here the printer forms object layers by emitting liquid photopolymer from an inkjet-style, multi-nozzle print head. After each layer is printed a powerful UV light is then used to set it solid before the next layer is printed. These 3D printers are capable to print up to 14 of 120 potential materials at the same time.
In another category of 3D printer, the hardware is based on material extrusion rather than solidifying a photopolymer. Here a semi-liquid material -- and most usually a hot thermoplastic -- is deposited from a computer-controlled print head. One of the key benefits of this technique is that objects can be made of out of exactly the same thermoplastics used in traditional injection moulding.  3D printers can print with both ABS (acrylonitrile butadiene styrene), as well as a biodegradable bio plastic called PLA (polylactic acid) that is produced from organic alternatives to oil. Due the recent developments in�synthetic biology�the production of PLA from a range of commonly available biomass materials is very much likely to be cost effective very soon, hence allowing 3D printing supplies to be grown conveniently. In addition to being used to output plastic objects, material extrusion printers have also been developed that can output other semi-liquid materials. The applications are already quite diverse, and range from 3D printers that can print in� HYPERLINK "http://www.flickr.com/photos/thurlravenscroft/5144590772/" \t "_blank" cheese�or� HYPERLINK "https://chocedge.com/choc-creator-v1.php" \t "_blank" chocolate, to� HYPERLINK "http://www.buildfreeform.com/" \t "_blank" concrete printers�that may in future allow entire buildings to be 3D printed. 
Another broad category of 3D printer hardware creates object layers by selectively sticking together successive layers of a powdered build material. This can also be achieved in two ways. Firstly, there are printers based on�binder jetting�(also sometimes known as 'inkjet powder printing'). Here a glue or 'binder' is jetted from an inkjet style print head to stick together successive powder layers. Most commonly the powder used is gypsum-based composite that needs to have its surface coated after printout if a robust object is required. Some binder jetting printers jet both a binder and coloured inks from five print heads, so allowing full-coloured 3D objects to be created at up to 600x540dpi.
Other binder jetting printers can build objects by sticking together plastic powders, sand or even metals. Where a binder is sprayed onto sand, the final object is used as a mould in '3D sandcasting', with molten liquid metal poured into it. Once the metal has cooled solid, the sand is then broken away. Here a layer of bronze or stainless steel metal powder is laid down and a print head moves across it to selectively spray on a binder solution. A heating lamp then dries the layer, and a fresh layer of powder is rolled over it, and the process repeats. Once all layers have been output, the object is then placed in an oven to fully cure the binder. At this stage the object is still very fragile, but is put in a kiln where it is infused with additional bronze powder. The final result is a very solid object that is a least 99.9 per cent solid metal. Rather than spraying on a binder, an alternative method to stick powder granules together is to apply heat. A well-established 3D printing technology that works in this manner is selective laser sintering�(SLS). This builds objects by laying down a fine layer of powder and then using a laser to selectively fuse some of its granules together. At present, SLS 3D printers can output objects using a wide range of powdered materials. These include wax, polystyrene, nylon, glass, ceramics, stainless steel, titanium, aluminium and various alloys including cobalt chrome. During printing, non-bonded powder granules support the object as it is constructed. Once printing is complete, almost all excess power is able to be recycled.
When SLS is used to directly produce metal objects the process is also called�direct metal laser sintering�(DMLS). Metal objects created by a DMLS 3D printer are about 99.99 per cent dense, and hence can be used in place of traditional metal parts in the vast majority of applications. While DMLS 3D prints metal objects directly, it is also common to use laser sintering to produce wax objects that are then sacrificed in a traditional lost-wax casting process. Here, once the wax object has been 3D printed a plaster mould is poured around it. When heated, the wax then melts and is poured away, after which a liquid metal can be poured in. Once this cools the plaster is removed, leaving a metal object that -- in some senses -- began its life on a 3D printer.
A closely related 3D printing technique to SLS is known as�selective laser melting�(SLM). This uses a laser to fully melt the powder granules that form a final object, rather than just heating them enough to fuse them together. As yet another variant, a technique called selective heat sintering�(SHS) uses a thermal print head -- rather than a laser -- to apply heat to successive layers of a thermoplastic powder. There is also a very similar process that uses an electron beam to fuse together metal powers, and which is known as 'electron beam melting'.
Finally, as yet another variant of powder solidification, there is a 3D printing technology called 'directed energy deposition' (also known as 'laser powder forming'). Here a powder of stainless steel, copper, nickel, cobalt, aluminium or titanium is blown into a high-power laser beam for deposition as a molten build material.

Research and Development
 3-D printing is being used by engineers and designers for creating prototypes since last one and half decades. But in last few years the plummeting cost of 3-D printing has encouraged both small users and large companies to apply this technology to expand and refine their respective business. Since 3-D printing often eliminates the need for things like fasteners, printed products often weigh less than their traditionally manufactured counterparts. So, the airplane manufacturer giant Airbus has started printing some components of its cabins, and by 2050, the company is hoping to be successful to print entire planes.
Numbers of governments consider 3-D printing as the next big thing after industrial revolution and are very keen to develop this technology further. In USA, the government has established National Additive Manufacturing Innovation Institute, as a part of a larger effort to create a �manufacturing belt� in the nation. This institute is aimed to support bringing additive manufacturing technologies into industrial and academic labs, as well as training programs for manufacturers to try out 3-D printing materials and machines.
The European Union is encouraging research and development in 3-D printing technologies as part of an effort to boost manufacturing output from 16 percent of its GDP to 20 percent by 2020. The United Kingdom is going to invest the equivalent of more than $10 million in grants for research and development of 3-D printing technologies.
European Space Agency (ESA) has produced a prototype 1.5-metric ton building block using a printer measuring 6 meters across to demonstrate potential 3-D printing techniques using lunar soil.
Potential Applications
Since the 3-D printing is still in infancy so right now it is very difficult to illustrate the areas where it could be applied. But this could be a potential game changer.  The proliferation of 3-D printing has consequences that go beyond shifts in supply chains and manufacturing. The technology may also change how products are envisioned, created and used. Because making a batch of one is no longer cost prohibitive, any product can be tailored to an individual consumer. Commonplace objects like toothbrush, shoes, and mobile phones can easily be customized. 
In a near future domestic 3-D printers are expected to make entry into homes, and items such as dinner plates, coat hooks, shoes and clothing will be printed as having custom designed to fit the needs and aesthetics of a particular person or family. In fact 3-D printed clothing and shoes already exist. It also extends to truly revolutionary products that would be unthinkable in a mass-production manufacturing economy. Recently the scientists successfully cured a 2-year-old girl with arthrogryposis multiplex congenita, a condition that makes it difficult for her to move on her own, by creating a robotic exoskeleton for enabling her to play with her toys. Another team of scientists and engineer have managed to create a prosthetic beak for a bald eagle named Beauty, whose own beak was mangled when she was shot in the face. Doctors and engineers are even experimenting with 3-D printing to create artificial cartilage, livers and kidneys. They hope to print new fingers and other organs in coming future.
The Negative Impacts of 3-D Printing
3-D printing technology is like a double edged sword .It can put forward many problems before society besides a number of benefits. Using 3-D printing one may create weapons; reproduce keys or counterfeit drugs in a lot simpler way. Terrorist organizations can create blueprints for a fully printable firearm and make those files widely available. At a hackers� workshop in 2012 CE, a German security consultant unlocked two widely-used brands of police handcuffs with keys that he had made multiple copies of using a 3-D printer. Scientists have recently reported using a 3-D printer for making �reactionware,� customized polymer containers that make particular chemical reactions run with ease. Such innovations could make life easier for illicit drug manufacturers, terrorists or others with ill intent. 
Future of 3-D printing
3-D printing is highly capable to change the destiny of human civilization like industrial revolution. Though it is not fully developed yet and could be misused by select groups but all these hindrances could be overcome by developing this technology in such a way that all the destructive or harmful elements could be successfully terminated during printing itself allowing this technology to serve humanity in sacrosanct way translating into a brighter future.

*************************************************************************************














 PAGE   \* MERGEFORMAT 5








FUVbcim���	�	�	�	�	



N
V
\
d
�
����Ҵ����z��p�p�f�\OEpOEh8"NOJQJ^Jh[mh[mOJQJ^Jh�OJQJ^Jh�9$OJQJ^Jh[mOJQJ^Jh[mh)E�6�OJQJ]�^Jh[mhFl�OJQJ^Jh[mh)E�OJQJ^Jh�*uh�*u5�OJQJ\�^Jh�*u5�OJQJ\�^J hLT$5�CJOJQJ\�^JaJ&hLT$hLT$5�CJOJQJ\�^JaJh�5�OJQJ\�^JhLT$5�OJQJ\�^JGVc
����]��#�&�(&*'*@*�,�.0�0�0����������������������
$dha$gd�(
$dha$gd6}"
$dha$gds-o$
&Fdha$gdLT$
$dha$gd[m�
��au���
%
D
H
J
h
�
�
�������fxz����������������������������󻱧���}p}fpfpfpfp�fph�v4OJQJ^Jh6}"hs-oOJQJ^Jh6}"hhKOJQJ^Jh�v4h�v45�OJQJ\�^Jh�a�5�OJQJ\�^Jh�MOJQJ^Jh�/�OJQJ^Jhs-oOJQJ^Jh[mh�a�OJQJ^Jh�a�OJQJ^Jh[mh�9$OJQJ^Jh�9$OJQJ^Jh[mh[mOJQJ^J&�v������������-~�')DK]a~�������Lx�����JU������!����Ÿ߸Ů�Ů���ŸŤŤ�Ť��ŤŤŤ�Ťŗ���ŗ�����h6}"h�OJQJ^Jh6}"h�,OJQJ^Jh�,OJQJ^Jh�v4OJQJ^Jh6}"h6}"OJQJ^Jh6}"h�MOJQJ^Jh6}"h�/�OJQJ^Jh6}"OJQJ^Jh6}"hs-oOJQJ^Jh�OJQJ^J5!"U������������'(1278op��������HP��G!W!�!�!�"�"�"�"^'b'�'�'H(N(l(s(&*������ߺߺߺߺߺߺߺߺߺ߰ߦߦߙߦߌ߂ߌ��ߌ߂߂ߌ�h�*uOJQJ^Jh6}"h�*uOJQJ^Jh6}"h�,OJQJ^Jh�,OJQJ^JhU||OJQJ^J!jh6}"h�MOJQJU^Jh�v4OJQJ^Jh�.OJQJ^Jh6}"h�MOJQJ^Jh�OJQJ^Jh�a�OJQJ^J3&*'*?*@*N*w*�*�*�*�*�*�*+R+]+g+l+,	,),},�,�,�,�,--t-�-�-�-�-�-	.�./~//�/�/0090L0^0d0����������¸®¸�¸̸�̚���̤̤̤̤̤̤̐�y��h�_Ch�_COJQJ^Jh�_COJQJ^Jh�(OJQJ^JhU||OJQJ^Jh�W&OJQJ^Jh�.OJQJ^Jh�e�OJQJ^Jh�/�OJQJ^Jh�(h�(OJQJ^Jh�/�h�/�5�OJQJ\�^Jh�e�5�OJQJ\�^Jh+#OJQJ^J-d0i0�0�0�0�0�0�0�0�0�0�011K1L1\1z1�12O2�2�2�2333
333!3'3+3-363B3c3i3�3�344�����ö��܏܏܏܏܂܂�xܶ���܂܂x���x�x�nhU||OJQJ^Jh�(&OJQJ^Jh�(h�(OJQJ^Jh�e�OJQJ^Jh�(h�(5�OJQJ\�^Jh�W&5�OJQJ\�^Jh�(h�_COJQJ^J0h�_CB*CJOJQJaJfHphq�
����h�_COJQJ^Jh�_Ch�_COJQJ^Jh�_Ch�e�OJQJ^J)�03787`:w:F<G<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<��������������������������$a$	d��gdLT$
$dha$gd�(4C4L4�4�4�4�4�4L5i5t5�5�5�5�5�5�5�5�5�67777&70787E7P7X7Z7�7�7�7�7�7
888!8��������������������ܻ�����w�w�jܻj�ܻ�h�(hm@�OJQJ^JhU||OJQJ^Jhm@�h�(5�OJQJ\�^Jh�.5�OJQJ\�^Jhm@�5�OJQJ\�^Jhm@�hm@�5�OJQJ\�^Jhm@�OJQJ^Jh�(h�C�OJQJ^Jh�C�OJQJ^Jh�(h�(OJQJ^Jh�(&OJQJ^Jh�(h�(&OJQJ^J'!8=8C8�8�8�8/9L9V9[9^:`:v:w:�:�:,;J;K;g;j;q;�;�;�;�;�;<<"<2<E<F<�<�<�<�<�<�<�<�<�<�������µ��������������������vnjnjnjnh�gjh�gUh)E�hAHOJQJ^JhAHOJQJ^Jh�(OJQJ^Jh�.OJQJ^Jh�quOJQJ^JhU||OJQJ^JhU||hU||OJQJ^JhU||5�OJQJ\�^JhLT$6�OJQJ]�^Jh�(h�(OJQJ^Jh�(hLT$OJQJ^JhLT$OJQJ^J)�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�<�������������h)E�hAHOJQJ^JjhLT$UmHnHuhAHmHnHujhLT$Uh^�hLT$h�g�<�<�<�<�<�<�����
$dha$gd�(21�h:p+#��/ ��=!��"��#��$��%�������n���������666666666vvvvvvvvv666666>666666666666666666666666666�6666666666�666666666666hH66666666666666666666666666666666666666666666666666666666666666666�62���� 0@P`p������2(�� 0@P`p������ 0@P`p������ 0@P`p������ 0@P`p������ 0@P`p������ 0@P`p��8X�V~$OJPJQJ^J_H9mH	@nH	@sH	@tH	@J`�J+#Normald��CJ_HaJmH	sH	tH	DA �D
Default Paragraph FontRi�R0Table Normal�4�
l4�a�(k �(
0No ListB���BhKapple-converted-spaced^@d	[m0Normal (Web)d��d�d[$\$CJOJPJQJ^J_H9aJ*W`�*�(`Strong5�\�4U`�!4	�M0	Hyperlink	>*ph�4@24LT$0Header

��B#F�o�AFLT$0Header CharCJ_HaJmH	sH	tH	4 @R4LT$0Footer

��B#F�o�aFLT$0Footer CharCJ_HaJmH	sH	tH	PK!����[Content_Types].xml���N�0E�H���-J��@%�ǎǢ|�ș$�ز�U��L�TB� l,�3��;�r��Ø��J��B+$�G]��7O٭V��<a���(7��I��R�{�pgL�=��r���8�5v&����uQ�뉑8��C����X=��$␴�?6N�JC������F�B.ʹ'�.�+���Y�T���^e5�5�� ��ð�_�g -�;�����Yl�ݎ��|6^�N��`�?���[��PK!�֧�6_rels/.rels���j�0���}Q��%v/��C/�}�(h"���O�
����=������ ����C?�h�v=��Ʌ��%[xp��{۵_�Pѣ<�1�H�0���O�R�Bd���JE�4b$��q_����6L�R�7`������0̞O��,�En7�Li�b��/�S���e��е�����PK!ky���theme/theme/themeManager.xml�M
� @�}�w��7c�(Eb�ˮ��C�AǠҟ����7��՛K
Y,�
�e�.���|,���H�,l����xɴ��I�sQ}#Ր���� ֵ+�!�,�^�$j=�GW��)�E�+&
8���PK!0�C)��theme/theme/theme1.xml�YOo�6��w toc'vu�ر�-M�n�i���P�@�I}��úa��m�a[�إ�4�:lЯ�GR��X^�6؊�>$�������!)O�^�r�C$�y@�����/�yH*��񄴽)�޵��߻��UDb�`}"�qۋ�Jח���X^�)I`n�E���p)���li�V[]�1M<������O�P��6r�=���z�gb�Ig��u��S�eb��O������R�D۫����qu	�g��Z����o~ٺlAp�lx�pT0���+[}`j���zA��V�2�F���i�@�q�v�֬5\|��ʜ̭N��le�X�ds���jcs���7���f����
��W��+�Ն�7����`���g�Ș��J���j|��h(�K��D-����
dX��iJ�؇(��x$(��:��;�˹!�I_�T��S1�����?E��?�����?ZBΪm���U/������?�~����xY���'���y5�g&΋/����ɋ�>���G�M�Ge���D�����3Vq%'#q�����$�8��K�����)f�w9:ĵ��
x}r�x����w���r�:\TZaG�*�y8I�j�bR��c|XŻ�ǿ�I
u3KG�nD1�NIB�s���
��R��u���K>V�.EL+M2�#'�f��i~�V��vl�{u8��z��H�
�*���:�(W�☕
~��J�T�e\O*�tHG��HY��}KN�P�*ݾ˦���TѼ�9/#��A7�qZ��$*c?���qU��n��w�N��%��O��i�4=3��N���)cbJ
u�V�4����(Tn���
7��_?���m-ٛ�{U���B�w�<w���_���$�#��[Ի�8{���(�/�$Ϫ0h݋�F۴��®{L�)#7�i�%�=A�:s�$�),��Qg20pp��f
\}DU4�p
M{��DB��%J������+{�l�C���]��=��5
2F��hsF+��Y��\Ɉ�n�ì��:3���E�[��6�9����`��&45Z!��*��5k8�`Fmw��-��"�d>�z��n���ʜ"Z��x��J�Z��p;�������{/�<�P;��,)''K�Q�k5���q��pN��8�K�Gb�e���
�S��d�̛�\17	�p�a�>��SR!���

3��K4'+�r�zQ
TT��I����Ivt]K�c⫲�K#�v�5+�|��D������~��O@%\w���_�nN[�L��9K���q��g�V�h��n
R!�y+��U�n�;�*&�/H�r��T�	�>��>\
�t��=.Tġ
���S; Z�~�!����P��9gi���C�ڧ!�#	B��,��;�X=ۻ,I�2UW�V�9$l�k���=A��j���;�{�A�P79�|s*Y�����;�̠�[�MC�ۿ�hf��]o��{oY=1k�yV��V���5E8�Vk+֜���\8���0X4D)�!!��?*|f�v�
u���"�x��A�@T_������q��6�4)kڬu�V�7��t�'��%;���i�9s�9�x���,��ڎ-45x�d���8?�ǘ�d�/Y|t��&LIL�J`�& �-G�t�/��PK!
ѐ��'theme/theme/_rels/themeManager.xml.rels��M
�0���wooӺ�&݈Э���5
6?$Q��
�,.�a��i����c2�1h�:�q��m��@RN��;d�`��o7�g�K(M&$R(.1�r'J��ЊT���8��V�"��AȻ�H�u}��|�$�b{��P����8�g/]�QAsم(����#��L�[������PK-!����[Content_Types].xmlPK-!�֧�60_rels/.relsPK-!ky���theme/theme/themeManager.xmlPK-!0�C)���theme/theme/theme1.xmlPK-!
ѐ��'�	theme/theme/_rels/themeManager.xml.relsPK]�
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<a:clrMap xmlns:a="http://schemas.openxmlformats.org/drawingml/2006/main" bg1="lt1" tx1="dk1" bg2="lt2" tx2="dk2" accent1="accent1" accent2="accent2" accent3="accent3" accent4="accent4" accent5="accent5" accent6="accent6" hlink="hlink" folHlink="folHlink"/>�4V����	0247�
�!&*d04!8�<�<!"#$%'()�0�<�< &*����'17o��4X��X��X��*,7!�����8�@�����������0�(	�
��B
�S����	?��4�4�4�4�4�4�4�4�4�4�4F4G4�4�4�4�4�4�4�4�4�4�4�4
�;H�������������!"��R#]#&/'///0/"424>4E4�4�4�4�4�4�>�m���N����������O���^�O`���OJPJQJ^Jo(-�����^�`���OJQJ^Jo(�h�Ho������^��`���OJQJo(�h�H�����"���^��"`���OJQJo(�h�H�����%���^��%`���OJQJ^Jo(�h�Ho��_(���^�_(`���OJQJo(�h�H����/+���^�/+`���OJQJo(�h�H�����-���^��-`���OJQJ^Jo(�h�Ho���0���^��0`���OJQJo(�h�H���>�m��������X��	@	@	@	@	@	@	@	@]{��U<�+�1&�#��M��.oY6}"+#�/$�9$LT$�(&�W&�(�,�v4	<B�_CAHhK8"N�g[m�&ns-o�*u�quU||�s�^�)E��/�V��a�Fl��e�m@�Tu��C��4�4�@�F4F4F4F4�4�@��Unknown������������	G��*�Ax�	�Times New Roman5��Symbol3.��*�Cx�	�Arial7.���[ @�Verdana7.���@�Calibri5��Mangal?=�	�*�Cx�	�Courier New;��WingdingsA���$B�Cambria Math"����h r����?��,�_��,_a�������r0�4�43�Q���HP	�$P����������������������)E�2!xx����RDAGBhaswar����Oh��+'��0T�������	��

(4<DL�RDAGNormalBhaswar12Microsoft Office Word@:&ڗ@ĽK` �@�5!'���,����՜.��+,��D��՜.��+,��@�hp��������
���Hewlett-Packard Company_�4Title� 8@_PID_HLINKS�A�_http://www.buildfreeform.com/T)https://chocedge.com/choc-creator-v1.phpGV:http://www.flickr.com/photos/thurlravenscroft/5144590772/	

 !"#$%&'()*+����-./0123����56789:;<=>?@ABCD����FGHIJKL����NOPQRST��������W��������������������������������������������������������������������������������������������������������������������������������������������������������������������Root Entry��������	�FP:�3'�Y�Data
������������,1Table����4�!WordDocument����4VSummaryInformation(������������EDocumentSummaryInformation8��������MCompObj������������r������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
����	�F Microsoft Word 97-2003 Document
MSWordDocWord.Document.8�9�q

© 2025 Cubjrnet7